Schulke mikrozid® universal wipes Schulke Australia Pty Ltd Chemwatch: 5553-66 Version No: 3.1 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: 18/10/2024 Print Date: 23/10/2024 L.GHS.AUS.EN.E # SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Id | dentifier | |------------|-----------| |------------|-----------| | Product name | Schulke mikrozid® universal wipes | | | | |-------------------------------|---|--|--|--| | Chemical Name | t Applicable | | | | | Synonyms | 003234 | | | | | Proper shipping name | SOLIDS CONTAINING FLAMMABLE LIQUID, N.O.S. (contains ethanol) | | | | | Chemical formula | Not Applicable | | | | | Other means of identification | Not Available | | | | # Relevant identified uses of the substance or mixture and uses advised against | | Pre-saturated cleaning and disinfection wipes for all types of high touch surfaces. Use according to manufacturer's directions. | |--------------------------|---| | Relevant identified uses | Use according to manufacturer's directions. | | | SDS are intended for use in the workplace ONLY. For domestic-use products, refer to consumer labels. | #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | Schulke Australia Pty Ltd | | | | | |-------------------------|---|--|--|--|--| | Address | 2-4 Lyonpark Road Macquarie Park NSW 2113 Australia | | | | | | Telephone | +61 2 8875 9300 | | | | | | Fax | +61 2 8875 9301 | | | | | | Website | www.schuelke.com.au | | | | | | Email | customerservice.au@schuelke.com | | | | | #### **Emergency telephone number** | Association / Organisation | Poisons information Centre | | | |-------------------------------------|----------------------------|--|--| | Emergency telephone number(s) | 13 11 26 | | | | Other emergency telephone number(s) | Not Available | | | # **SECTION 2 Hazards identification** #### Classification of the substance or mixture | Poisons Schedule | Not Applicable | | | | |--------------------|---|--|--|--| | Classification [1] | Flammable Solids Category 1, Serious Eye Damage/Eye Irritation Category 2A | | | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | | #### Label elements Hazard pictogram(s) Signal word Danger # Hazard statement(s) | H228 | Flammable solid. | | | |--------|--------------------------------|--|--| | H319 | Causes serious eye irritation. | | | | AUH019 | May form explosive peroxides. | | | ## Precautionary statement(s) Prevention Chemwatch: 5553-66 Page 2 of 13 Version No: 3.1 #### Schulke mikrozid® universal wipes Issue Date: 18/10/2024 Print Date: 23/10/2024 | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | | | | |------|--|--|--|--|--| | P240 | Ground and bond container and receiving equipment. | | | | | | P241 | P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | | | #### Precautionary statement(s) Response | P370+P378 | In case of fire: Use water jets to extinguish. | | | | | |---|---|--|--|--|--| | P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | | | #### Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal Not Applicable #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | | | |---------------|---|------|--|--| | Not Available | wipes containing | | | | | 64-17-5 | 10-<30 <u>ethanol</u> | | | | | 67-63-0 | 10-<20 <u>isopropanol</u> | | | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | | #### **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Generally not applicable. | |--------------|---| | Skin Contact | If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. Generally not applicable. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Generally not applicable. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Generally not applicable. | # Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For acute or short term repeated exposures to ethanol: - Acute ingestion in non-tolerant patients usually responds to supportive care with special attention to prevention of aspiration, replacement of fluid and correction of nutritional deficiencies (magnesium, thiamine pyridoxine, Vitamins C and K). - Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination. Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine). Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single - Fructose administration is contra-indicated due to side effects. #### **SECTION 5 Firefighting measures** Chemwatch: 5553-66 Page 3 of 13 Schulke mikrozid® universal wipes Issue Date: 18/10/2024 Print Date: 23/10/2024 For SMALL FIRES: Dry chemical, CO2, water spray or foam. For LARGE FIRES: Water-spray, fog or foam. #### Special hazards arising from the substrate or mixture Fire Fighting Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters Version No. 3.1 - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves - Prevent, by any means available, spillage from entering drains or water
course. - Fight fire from a safe distance, with adequate cover. - If safe, switch off electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraying water onto liquid pools. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. Slight hazard when exposed to heat, flame and oxidisers # Flammable solid which burns and propagates flame easily, even when partly wetted with water. - Any source of ignition, i.e. friction, heat, sparks or flame, may cause fire or explosion. - May burn fiercely - May form explosive mixtures with air. - May REIGNITE after fire is extinguished. - Containers may explode on heating. - Solids may melt and flow when heated or involved in a fire. - Runoff may pollute waterways. # Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if #### Fire/Explosion Hazard - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport, thereby - providing a source of ignition. - Decomposition products may be irritating, poisonous or corrosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place. Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides HAZCHEM # **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up - Remove all ignition sources. - DO NOT touch or walk through spilled material. - Clean up all spills immediately. - Avoid contact with skin and eyes. - Prevent dust cloud. - With clean shovel (preferably non-sparking) place material into clean, dry container and cover loosely. - Move containers from spill area. - Control personal contact with the substance, by using protective equipment. - Clean up all spills immediately. - Secure load if safe to do so. - ▶ Bundle/collect recoverable product. - Collect remaining material in containers with covers for disposal. #### **Major Spills** Minor Spills - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves - Prevent, by any means available, spillage from entering drains or water course. - Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - Collect recoverable product into labelled containers for recycling. - Neutralise/decontaminate residue (see Section 13 for specific agent). - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by all means available, spillage from entering drains or water courses. - Consider evacuation (or protect in place). - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse / absorb vapour. Chemwatch: 5553-66 Page 4 of 13 Issue Date: 18/10/2024 Version No. 3.1 Print Date: 23/10/2024 Schulke mikrozid® universal wipes - Contain or absorb spill with sand, earth or vermiculite. - Collect recoverable product into labelled containers for recycling. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - DO NOT touch or walk through spilled material. - Control personal contact with the substance, by using protective equipment. - Prevent, by any means available, spillage from entering drains or water course. - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Contain or cover with sand, earth or vermiculite. - Use only spark-free shovels and explosion proof equipment. - Collect recoverable product into labelled containers for recycling. Collect solid residues and seal in labelled drums for disposal. - Wash area with water and dike for later disposal; prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services - Clean up all spills immediately. - Wear protective clothing, safety glasses, dust mask, gloves. Secure load if safe to do so. Bundle/collect recoverable product. - Use dry clean up procedures and avoid generating dust. - Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). - Water may be used to prevent dusting. - Collect remaining material in containers with covers for disposal. - Flush spill area with water. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** Safe handling # Precautions for safe handling The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example. Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised. - A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date. - The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date. - Unopened containers received from the supplier should be safe to store for 18 months. - Opened containers should not be stored for more than 12 months. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid smoking, naked lights or ignition sources. - When handling, **DO NOT** eat, drink or smoke. - Avoid contact with incompatible materials - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Working clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. # FOR MINOR QUANTITIES: - Store in an indoor fireproof cabinet or in a room of noncombustible construction. - Provide adequate portable fire-extinguishers in or near the storage area. # FOR PACKAGE STORAGE: - Store in original containers in approved flame-proof area. - ▶ No smoking, naked lights, heat or ignition sources - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - Keep containers securely sealed. Other information - Store away from incompatible materials in a cool, dry, well ventilated area. - Protect containers against physical damage and check regularly for leaks. - Protect containers from exposure to weather and from direct sunlight unless: (a) the packages are of metal or plastic construction; (b) the packages are securely closed are not opened for any purpose while in the area where they are stored and (c) adequate precautions are taken to ensure that rain water, which might become contaminated by the dangerous goods, is collected and disposed of safely. - Ensure proper stock-control measures are maintained to prevent prolonged storage of dangerous goods. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Store away from incompatible materials. #### Conditions for safe storage, including any incompatibilities #### Suitable container Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler. For low viscosity materials and solids: Drums and jerricans must be of the non-removable head type. Where a
can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C): - Removable head packaging and - cans with friction closures may be used. Chemwatch: **5553-66** Page **5** of **13** #### Schulke mikrozid® universal wipes Issue Date: 18/10/2024 Print Date: 23/10/2024 Where combination packages are used, there must be sufficient inert absorbent material to absorb completely any leakage that may occur, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. All combination packages for Packing group I and II must contain cushioning material. No restriction on the type of containers. Packing as recommended by manufacturer. Check all material is clearly labelled. # Storage incompatibility Isopropanol (syn: isopropyl alcohol, IPA): - Forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones, especially methyl ethyl ketone (MEK, 2-butanone), will accelerate the rate of peroxidation. - Reacts violently with strong oxidizers, powdered aluminum (exothermic), crotonaldehyde, diethyl aluminum bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminum triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/incandescence), triisobutyl aluminum. - Reacts with phosphorus trichloride forming hydrogen chloride gas. - Reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminum isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminum hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminum, triistomethane. - Attacks some plastics, rubber, and coatings. - Reacts with metallic aluminum at high temperature. - May generate electrostatic charges. - Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates. - Avoid strong bases. #### SECTION 8 Exposure controls / personal protection #### Control parameters Version No: 3.1 Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-------------|-------------------|-----------------------|----------------------|---------------|---------------| | Australia Exposure Standards | ethanol | Ethyl alcohol | 1000 ppm / 1880 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure Standards | isopropanol | Isopropyl alcohol | 400 ppm / 983 mg/m3 | 1230 mg/m3 / 500 ppm | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |-------------|---------------|---------------| | ethanol | Not Available | Not Available | | isopropanol | Not Available | Not Available | #### MATERIAL DATA # Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area. - Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. - Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. - Open-vessel systems are prohibited. - Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. - Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system. - For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. - Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas). - Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air. - Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed. For large scale or continuous use: - ▶ Spark-free, earthed ventilation system, venting directly to the outside and separate from usual ventilation systems - Provide dust collectors with explosion vents Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment. # Individual protection measures, such as personal protective equipment Appropriate engineering controls #### Eye and face protection - Safety glasses with side shields. - ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or #### Schulke mikrozid® universal wipes irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. No special equipment required due to the physical form of the product. Skin protection See Hand protection below Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber Hands/feet protection Wear physical protective gloves, e.g. leather. Wear safety footwear. No special equipment required due to the physical form of the product. **Body protection** See Other protection below Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] • Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filtertype respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and evewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and Other protection required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should
undergo decontamination and be required to shower upon removal of the garments and hood • Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. No special equipment required due to the physical form of the product. #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index" The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Schulke mikrozid® universal wipes | Material | СРІ | |-------------------|-----| | NEOPRENE | Α | | NITRILE | Α | | NITRILE+PVC | Α | | PE/EVAL/PE | Α | | PVC | В | | BUTYL | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. * Where the glove is to be used on a short term, casual or infrequent basis, factors * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Ansell Glove Selection | Glove — In order of recommendation | |------------------------------------| | MICROFLEX® 63-864 | | MICROFLEX® Diamond Grip® MF-300 | | AlphaTec 02-100 | | AlphaTec® 79-700 | | AlphaTec® Solvex® 37-675 | | TouchNTuff® 83-500 | | AlphaTec® Solvex® 37-185 | | AlphaTec® 38-612 | | AlphaTec® 58-008 | | DermaShield™ 73-711 | The suggested gloves for use should be confirmed with the glove supplier. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 10 x ES | Air-line* | A-2 | A-PAPR-2 ^ | | up to 20 x ES | - | A-3 | - | | 20+ x ES | - | Air-line** | - | * - Continuous-flow; ** - Continuous-flow or positive pressure demand ¹ - Full-face $A(All \ classes) = Organic \ vapours, \ B \ AUS \ or \ B1 = Acid \ gasses, \ B2 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ E = Sulfur \ dioxide(SO2), \ G = Agricultural \ chemicals, \ K = Ammonia(NH3), \ Hg = Mercury, \ NO = Oxides \ of \ nitrogen, \ MB = Methyl \ bromide, \ AX = Low \ boiling \ point \ organic \ compounds(below \ 65 \ degC)$ Respiratory protection not normally required due to the physical form of the product. Schulke mikrozid® universal wipes Issue Date: 18/10/2024 Print Date: 23/10/2024 #### **SECTION 9 Physical and chemical properties** Version No: 3.1 #### Information on basic physical and chemical properties | Appearance | Solid wipes containing colourless flammable liquid with alcohol like odour; miscible with water. | | | |---|--|--|----------------| | Physical state | Manufactured | Relative density (Water = 1) | 0.95 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 425 | | pH (as supplied) | 3.5 | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | <-5 | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 80 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 26 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | 4 | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density (g/m3) | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** # Information on toxicological effects Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by inhalation. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhaled Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving narcosis. The narcotic dose for rats, after 2 hours of exposure, is 19260 ppm. The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal. Acute effects from inhalation of high concentrations of various are pulmonary intitation, including counting with nausea: central nervous Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination # Ingestion Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by swallowing. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Accidental ingestion of the material may be damaging to the health of the individual. Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher
alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where Chemwatch: **5553-66** Page **8** of **13** Schulke mikrozid® universal wipes they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased. Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema. Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent. Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by skin contact. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. #### Skin Contact Version No. 3.1 Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful. Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity Genotoxicity: All genotoxicity assays reported for isopropanol have been negative Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either: - ▶ produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. #### Eve Direct contact of the eye with ethanol may cause immediate stinging and burning with reflex closure of the lid and tearing, transient injury of the corneal epithelium and hyperaemia of the conjunctiva. Foreign-body type discomfort may persist for up to 2 days but healing is usually spontaneous and complete. Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. There is sufficient evidence to establish a causal relationship between human exposure to the material and impaired fertility #### Chronic There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: - clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects. There is sufficient evidence to establish a causal
relationship between human exposure to the material and subsequent developmental toxic effects in the off-spring. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of: - clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Schulke mikrozid® universal wipes TOXICITY IRRITATION Issue Date: 18/10/2024 Print Date: 23/10/2024 Chemwatch: **5553-66**Version No: **3.1** #### Schulke mikrozid® universal wipes Issue Date: **18/10/2024**Print Date: **23/10/2024** | | Not Available | Not Available | |-------------|--|--| | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 17100 mg/kg ^[1] | Eye (Rodent - rabbit): 0.1mL | | | Inhalation (Rat) LC50: 64000 ppm4h ^[2] | Eye (Rodent - rabbit): 100mg/4S - Moderate | | | Oral (Rat) LD50: 7060 mg/kg ^[2] | Eye (Rodent - rabbit): 100uL - Moderate | | | | Eye (Rodent - rabbit): 500mg - Severe | | ethanol | | Eye (Rodent - rabbit): 500mg/24H - Mild | | etilalioi | | Eye: adverse effect observed (irritating) ^[1] | | | | Eye: no adverse effect observed (not irritating) ^[1] | | | | Skin (Human): 70%/2D | | | | Skin (Rodent - rabbit): 20mg/24H - Moderate | | | | Skin (Rodent - rabbit): 400mg - Mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 12800 mg/kg ^[2] | Eye (Rodent - rabbit): 100mg - Severe | | | Inhalation (Mouse) LC50: 53 mg/L4h ^[2] | Eye (Rodent - rabbit): 100mg/24H - Moderate | | isopropanol | Oral (Mouse) LD50; 3600 mg/kg ^[2] | Eye (Rodent - rabbit): 10mg - Moderate | | | | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (Rodent - rabbit): 500mg - Mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise
specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | | | | | | | | ETHANOL | | repeated exposure and may produce a contact dermatitis (nonallergic). This form on an and swelling the epidermis. Histologically there may be intercellular oedema of the epidermis. | Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. # ISOPROPANOL Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful. **Developmental toxicity:** The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity Genotoxicity: All genotoxicity assays reported for isopropanol have been negative Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing | Acute Toxicity | × | Carcinogenicity | × | |---------------------------|---|-----------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | Page 10 of 13 Chemwatch: 5553-66 Version No: 3.1 #### Schulke mikrozid® universal wipes Issue Date: 18/10/2024 Print Date: 23/10/2024 | Serious Eye
Damage/Irritation | * | STOT - Single Exposure | × | |-----------------------------------|----------|--------------------------|---| | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 💢 – Data either not available or does not fill the criteria for classification ✓ – Data available to make classification #### **SECTION 12 Ecological information** #### Toxicity | Schulke mikrozid® universal
wipes | Endpoint | Test Duration (hr) | Species | Value | Source | |--------------------------------------|------------------|--------------------|---|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | 275mg/l | 2 | | | EC50 | 48h | Crustacea | 2mg/L | 4 | | ethanol | EC50(ECx) | 96h | Algae or other aquatic plants | <0.001mg/L | 4 | | | LC50 | 96h | Fish | 42mg/L | 4 | | | EC50 | 96h | Algae or other aquatic plants | <0.001mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | >1000mg/l | 1 | | | EC50 | 48h | Crustacea | 7550mg/l | 4 | | isopropanol | EC50(ECx) | 24h | Algae or other aquatic plants | 0.011mg/L | 4 | | | LC50 |
96h | Fish | >1400mg/L | 4 | | | EC50 | 96h | Algae or other aquatic plants | >1000mg/l | 1 | | Legend: | | | CHA Registered Substances - Ecotoxicological Inform
C Aquatic Hazard Assessment Data 6. NITE (Japan) - | | | #### DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------|-----------------------------|-----------------------------| | ethanol | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) | | isopropanol | LOW (Half-life = 14 days) | LOW (Half-life = 3 days) | # Bioaccumulative potential | Ingredient | Bioaccumulation | |-------------|----------------------| | ethanol | LOW (LogKOW = -0.31) | | isopropanol | LOW (LogKOW = 0.05) | # Mobility in soil | Ingredient | Mobility | | |-------------|-----------------------|--| | ethanol | HIGH (Log KOC = 1) | | | isopropanol | HIGH (Log KOC = 1.06) | | # **SECTION 13 Disposal considerations** #### Waste treatment methods - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Management Authority for disposal. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. #### Where in doubt contact the responsible authority. Product / Packaging disposal - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material) - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **SECTION 14 Transport information** # **Labels Required** Chemwatch: **5553-66**Version No: **3.1** #### Schulke mikrozid® universal wipes Issue Date: **18/10/2024**Print Date: **23/10/2024** Marine Pollutant NC HAZCHEM 1Z # Land transport (ADG) | 14.1. UN number or ID number | 3175 | | | |------------------------------------|---|--------------------|--| | 14.2. UN proper shipping name | SOLIDS CONTAINING FLAMMABLE LIQUID, N.O.S. (contains ethanol) | | | | 14.3. Transport hazard class(es) | Class Subsidiary Hazard | 4.1 Not Applicable | | | 14.4. Packing group | П | | | | 14.5. Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | Special provisions 216 274 Limited quantity 1 kg | | | # Air transport (ICAO-IATA / DGR) | 14.1. UN number | 3175 | | | |------------------------------------|---|----------------|-------| | 14.2. UN proper shipping name | Solids containing flammable liquid, n.o.s. * (contains ethanol) | | | | | ICAO/IATA Class | 4.1 | | | 14.3. Transport hazard class(es) | ICAO / IATA Subsidiary Hazard | Not Applicable | | | Class(es) | ERG Code | 3L | | | 14.4. Packing group | II | | | | 14.5. Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | Special provisions | | | | | Cargo Only Packing Instructions | | | | | Cargo Only Maximum Qty / Pack | | | | | Passenger and Cargo Packing Instructions | | | | | Passenger and Cargo Maximum Qty / Pack | | 15 kg | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y441 | | | Passenger and Cargo Limited Maximum Qty / Pack | | 5 kg | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 3175 | | | |------------------------------------|---|------------------------------|--| | 14.2. UN proper shipping name | SOLIDS CONTAINING FLAMMABLE LIQUID, N.O.S. (contains ethanol) | | | | 14.3. Transport hazard class(es) | IMDG Class IMDG Subsidiary Haz | 4.1 Arard Not Applicable | | | 14.4. Packing group | П | | | | 14.5 Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities | F-A , S-I
216 274
1 kg | | # 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | ethanol | Not Available | | isopropanol | Not Available | # 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------|---------------| | ethanol | Not Available | | isopropanol | Not Available | Chemwatch: **5553-66**Version No: **3.1** Schulke mikrozid® universal wipes Issue Date: 18/10/2024 Print Date: 23/10/2024 #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### ethanol is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) #### isopropanol is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic #### **Additional Regulatory Information** Not Applicable #### **National Inventory Status** | National Inventory | Status | | |---|--|--| | Australia - AIIC / Australia Non-
Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (ethanol; isopropanol) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | All chemical substances in this product have been designated as TSCA Inventory 'Active' | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 18/10/2024 | |---------------|------------| | Initial Date | 21/07/2022 | #### **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------|--| | 2.1 | 21/07/2022 | Toxicological information - Acute Health (eye), Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Physical and chemical properties - Appearance, Toxicological information - Chronic Health, Hazards identification - Classification, Disposal considerations - Disposal, Exposure controls / personal protection - Engineering Control, Ecological Information - Environmental, Firefighting measures - Fire Fighter (extinguishing media), Firefighting measures - Fire Fighter (fire/explosion hazard), Firefighting measures - Fire Fighter (fire fighting), Firefighting measures - Fire Fighter (fire incompatibility), First Aid measures - First Aid (eye), First Aid measures - First Aid (swallowed), Handling and storage - Handling Procedure, Composition / information on ingredients - Ingredients, Stability and reactivity - Instability Condition, Exposure controls / personal protection - Personal Protection (other), Exposure controls / personal protection - Personal Protection - Personal Protection (eye), Exposure controls / personal protection - Personal Protection - Personal Protection -
Personal Protection - Personal Protection (eye), Exposure controls / personal protection - Personal Protection (hands/feet), Accidental release measures - Spills (minor), Handling and storage - Storage (storage incompatibility), Handling and storage - Storage (storage requirement), Handling and storage - Storage (storage incompatibility), Handling and storage - Storage (storage requirement), Handling and storage - Storage (storage), Transport Information - Transport, Transport Information, Identification of the substance / mixture and of the company / undertaking - Use, Name | | 3.1 | 18/10/2024 | Toxicological information - Acute Health (eye), Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Toxicological information - Chronic Health, Hazards identification - Classification, Disposal considerations - Disposal, Exposure controls / personal protection - Engineering Control, Firefighting measures - Fire Fighter (extinguishing media), Firefighting measures - Fire Fighter (fire fighting), First Aid measures - First Aid (eye), First Aid measures - First Aid (inhaled), First Aid measures - First Aid (skin), First Aid measures - First Aid (swallowed), Handling and storage - Handling Procedure, Composition / information on ingredients - Ingredients, Exposure controls / personal protection - Personal Protection (other), Exposure controls / personal protection - Personal Protection (eye), Exposure controls / personal protection - Personal Protection - Personal Protection (hands/feet), Accidental release measures - Spills (major), Handling and storage - Storage (storage incompatibility), Handling and storage - Storage (storage requirement), Handling and storage - Storage (suitable container), Name | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. Chemwatch: 5553-66 Page 13 of 13 Version No: 3.1 #### Schulke mikrozid® universal wipes Issue Date: 18/10/2024 Print Date: 23/10/2024 The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be #### **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - ▶ OSF: Odour Safety Factor - NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - LOD: Limit Of Detection - OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - BEI: Biological Exposure IndexDNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - ▶ AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ► EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ▶ TSCA: Toxic Substances Control Act - TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.